Skip to content

Performance Optimization Patterns with GitHub Copilot

Prompt 1: Implementing Performance Optimizations

Intent: To help developers implement performance optimizations using GitHub Copilot.

Context: Guide the implementation of performance improvements:
- Algorithm optimization
- Resource management
- Caching strategies
- Load handling

Optimization Patterns

  1. Algorithmic Optimization

  2. Optimize algorithm for:

  3. Task: Data processing pipeline
  4. Current complexity: O(n²)
  5. Target complexity: O(n log n)
  6. Constraints:
    • Memory usage
    • Data consistency
    • Error handling
  7. Resource Management

  8. Implement efficient resource handling:

    • Memory pooling
    • Connection management
    • Batch processing
    • Resource cleanup

Performance Patterns

  1. Caching Strategy

    /**
     * Implement multi-level caching:
    * - Memory cache
     * - Distributed cache
     * - Cache invalidation
     * - Cache warming
     */
    

  2. Load Handling

    /**
     * Implement load management:
     * - Rate limiting
     * - Circuit breaking
     * - Load shedding
     * - Back pressure
     */
    

Data Structure Optimization

  1. Collection Optimization

    /**
     * Optimize data structures for:
     * - Fast access patterns
     * - Memory efficiency
     * - Concurrent operations
     * - Bulk operations
     */
    

  2. Memory Management

    /**
     * Implement memory-efficient handling:
     * - Object pooling
     * - Lazy loading
     * - Reference management
     * - Garbage collection hints
     */
    

Query Optimization

  1. Database Queries

    /**
     * Optimize database operations:
     * - Query planning
     * - Index usage
     * - Join optimization
     * - Batch operations
     */
    

  2. Data Access Patterns

    /**
     * Implement efficient data access:
     * - Eager loading
     * - Pagination
     * - Streaming
     * - Partial loading
     */
    

Performance Monitoring

  1. Metrics Collection

    /**
     * Implement performance monitoring:
     * - Response times
     * - Resource usage
     * - Error rates
     * - System health
     */
    

  2. Performance Analysis

    /**
     * Analyze performance data:
     * - Trend analysis
     * - Bottleneck detection
     * - Anomaly detection
     * - Capacity planning
     */
    

Best Practices

  1. Code Organization

    /**
     * Structure code for performance:
     * - Modular design
     * - Efficient imports
     * - Code splitting
     * - Tree shaking
     */
    

  2. Runtime Optimization

    /**
     * Optimize runtime behavior:
     * - Async operations
     * - Worker threads
     * - Memory management
     * - Event loop optimization
     */
    

Anti-patterns to Avoid

  1. Performance Issues
  2. Premature optimization
  3. Memory leaks
  4. N+1 queries
  5. Blocking operations

  6. Resource Management

  7. Unclosed resources
  8. Thread pool abuse
  9. Connection leaks
  10. Unbounded caches

Testing Performance

  1. Load Testing

    /**
     * Implement performance tests:
     * - Load scenarios
     * - Stress testing
     * - Endurance testing
     * - Capacity testing
     */
    

  2. Benchmarking

    /**
     * Implement benchmarking:
     * - Operation timing
     * - Resource usage
     * - Comparative analysis
     * - Regression testing
     */