Performance Optimization Patterns with GitHub Copilot¶
Prompt 1: Implementing Performance Optimizations¶
Intent: To help developers implement performance optimizations using GitHub Copilot.
Context: Guide the implementation of performance improvements:
- Algorithm optimization
- Resource management
- Caching strategies
- Load handling
Optimization Patterns¶
-
Algorithmic Optimization
-
Optimize algorithm for:
- Task: Data processing pipeline
- Current complexity: O(n²)
- Target complexity: O(n log n)
- Constraints:
-
- Memory usage
-
- Data consistency
-
- Error handling
-
Resource Management
-
Implement efficient resource handling:
-
- Memory pooling
-
- Connection management
-
- Batch processing
-
- Resource cleanup
Performance Patterns¶
-
Caching Strategy
/** * Implement multi-level caching: * - Memory cache * - Distributed cache * - Cache invalidation * - Cache warming */
-
Load Handling
/** * Implement load management: * - Rate limiting * - Circuit breaking * - Load shedding * - Back pressure */
Data Structure Optimization¶
-
Collection Optimization
/** * Optimize data structures for: * - Fast access patterns * - Memory efficiency * - Concurrent operations * - Bulk operations */
-
Memory Management
/** * Implement memory-efficient handling: * - Object pooling * - Lazy loading * - Reference management * - Garbage collection hints */
Query Optimization¶
-
Database Queries
/** * Optimize database operations: * - Query planning * - Index usage * - Join optimization * - Batch operations */
-
Data Access Patterns
/** * Implement efficient data access: * - Eager loading * - Pagination * - Streaming * - Partial loading */
Performance Monitoring¶
-
Metrics Collection
/** * Implement performance monitoring: * - Response times * - Resource usage * - Error rates * - System health */
-
Performance Analysis
/** * Analyze performance data: * - Trend analysis * - Bottleneck detection * - Anomaly detection * - Capacity planning */
Best Practices¶
-
Code Organization
/** * Structure code for performance: * - Modular design * - Efficient imports * - Code splitting * - Tree shaking */
-
Runtime Optimization
/** * Optimize runtime behavior: * - Async operations * - Worker threads * - Memory management * - Event loop optimization */
Anti-patterns to Avoid¶
- Performance Issues
- Premature optimization
- Memory leaks
- N+1 queries
-
Blocking operations
-
Resource Management
- Unclosed resources
- Thread pool abuse
- Connection leaks
- Unbounded caches
Testing Performance¶
-
Load Testing
/** * Implement performance tests: * - Load scenarios * - Stress testing * - Endurance testing * - Capacity testing */
-
Benchmarking
/** * Implement benchmarking: * - Operation timing * - Resource usage * - Comparative analysis * - Regression testing */